15ME61

Sixth Semester B.E. Degree Examination, July/August 2022 **Finite Element Method**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Define FEM and explain basics steps involved in FEM. 1

(08 Marks)

With sketches explain plane stress and plane strain.

(08 Marks)

OR

Explain the concept of node numbering scheme and convergence criteria.

Use Rayleigh – Ritz method to find the deflection at the centre of a simply supported beam of span length "\empty" subjected to a concentrated load "P" at its midpoint as shown in Fig.Q2(b).

Module-2

Explain and write the difference between CST and LST element.

(08 Marks)

Fig.Q3(b) shows 1D stepped bar element subjected to an axial load. Determine:

i) Nodal displacement — ii) Stress in each element. By using elimination method.

(08 Marks)

OR

a. Derive shape function for a 1D – bar element.

b. A truss shown n Fig.Q4(b) made up of 2 bars. Determine nodal displacement, stress in each element. Take $A_1 = 1200 \text{mm}^2$; $A_2 = 1000 \text{mm}^2$ and $E = E_1 = E_2 = 2 \times 10^5 \text{MPa}$.

(10 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Module-3

5 a. Derive Hermite shape function for a beam element.

(08 Marks)

b. For a beam shown in Fig.Q5(b). Determine the deflections at mid span given $E = 2 \times 10^5 \text{mm}^2$ and $I = 5 \times 10^6 \text{mm}^2$.

(08 Marks)

OR

6 a. Derive element stiffness matrix for Torsion element.

(06 Marks)

b. A solid stepped bar of circular cross section shown in Fig.Q6(b) is subjected to a torque of 1N-mm at its free end and a torque of 3N-mm at its charge in cross section. Determine the angle of twist and shear stresses in the bar. Take $E = 2 \times 10^5 \text{mm}^2$. And $G = 7 \times 10^4 \text{ N/mm}^2$.

(10 Marks)

Module-4

- 7 a. Derive governing differential equation for 1D heat transfer (conduction). (0)
 - (06 Marks
 - b. Determine the temperature distribution through the composite wall subjected to convection heat loss on the right side surface with convection heat transfer co-efficient shown in Fig.Q7(b), the ambient temperature is 5°C.

 $K_1 = 6W/m^{\circ}C$, $K_2 = 20W/m^{\circ}C$, $h = 6W/m^{\circ}C$.

(10 Marks)

OR

8 a. Calculate the temperature distribution in a 1D fin with physical properties given in Fig.Q8(a), there is a uniform generation of heat inside the wall of $Q = 400 \text{w/m}^3$.

Fig.Q8(a)

(08 Marks)

b. For the smooth pipe shown in Fig.Q8(b), with uniform cross section of 1 m². Determine the flow velocities at the centre and right end, knowing the velocity at the left is $V_x = 2m/s$.

Module-5

9 a. Derive the stiffness matrix of axisymmestric bodies with triangular elements. (10 Marks)

b. For the element of an axisymmetric body rotating with a constant velocity w = 1000rpm as show in Fig.Q9(b). Determine the body force vector. Include the Weight of the material where the specific density is 7850kg/m³.

OR

10 a. Derive consistent mass matrix and lumped mass matrix for a bar element. (08 Marks)

b. Evaluate eigen value and eigen vector for the stepped bar shown in Fig.Q10(b). Take E = 200GPa and specific weight 7850kg/m³. Take $A_1 = 400$ mm² and $A_2 = 200$ mm².

